.

Wednesday, March 6, 2019

Lab Test: Tensile Testing

The automatic interjectlyties of materials atomic number 18 obstinate by performing cargonfully designed laboratory experiments that ite regularise as nearly as possible the service conditions. In realistic life, there argon m some(prenominal) factors involved in the nature in which misdirects be utilise on a material. The following are some common examples of humours in which perverts might be applied ductile, compressive, and shear. These properties are important In materials selections for mechanized design. Other factors that often nonplus the design process Include temperature and time factors.The carrouselic of this lab is contain to the tensile property of polymers. Figure 1 shows a tensile interrogation machine similar to the one used in this lab. This running play is a destructive manner, in which a specimen of a standard set and dimensions (prepared according to ASTM D 638 standard canvass method for tensile properties of plastics) is subjected to an a xile load. During a regular(prenominal) tensile experiment, a dog-bone modulated specimen Is gripped at Its two ends and Is pulled to elongate at a determined rate to Its breakpoint a highly ductile polymer may non reach its breakpoint.The tensile inspector seed in this lab is manufactured by Insertion (model 5569). It has a maximum load of 2 or 50 ink and a variable pulling rate. The setup of the experiment could be changed to accommodate unlike types of mechanical testing, according to the ASTM standard (e. G. Compression test, etc). For analytical purposes, a plot of land of adjudicate (o) versus strain (E) Is constructed during a tensile test experiment, which can be done automatic altogethery on the software provided by the instrument manufacturer. Stress, in the metric system, is usually mea receivedd in N/ mm or Pa, such that 1 N/mm = 1 Pa.From the experiment, the value of show is lactated by dividing the come up of force (F) applied by the machine in the axial direct ion by its report-sectional sweep (A), which is deliberate front to running the experiment. Mathematically, It Is expressed In Equation 1. The strain values, which have no units, can be calculated using Equation 2, where L Is the instantaneous continuance of the specimen and LO Is the initial length. (Equation 1) (Equation 2) A normal stress-strain plication would experience like Figure 2. The stress-strain curve shown In Figure 2 Is a textbook example of a stress-strain curve.In reality, not all stress-strain curves perfectly check the one shown In Figure 2. This stress-strain curve Is typical for ductile tinny elements. Another thing to take note is that Figure 2 shows an technology stress-strain curve. When a material reaches its ultimate stress strength of the stress-strain curve, its muff-sectional heavens reduces dramatically, a term cognise as necking. When the ready reckoner software plots the stress-strain curve, it assumes that the cross sectional area stay s eternal throughout the experiment, even during necking, then causing the curve to sky down.The true stress- change in the cross sectional area of the specimen throughout the experiment. Theoretically, even without measuring the cross-section(a) area of the specimen during the tensile experiment, the true stress-strain curve could still be constructed by assuming that the volume of the material stays the same. Using this concept, both(prenominal) the true stress (UT) and the true strain (ET) could be calculated using Equations 3 and 4, respectively. The derivation of these equations is beyond the scope of this lab report. Consult every standard mechanics textbook to learn more about these equations.In these equations, LO refers to the initial length of the specimen, L refers o the instantaneous length and o refers to the instantaneous stress. (Equation 3) (Equation 4) Figure 2 also shows that a stress-strain curve is divided into quatern orbits elastic, yielding, strain harde ning (commonly occurs in metallic materials), and necking. The area under the curve represents the amount of energy needed to accomplish each of these events. The total area under the curve (up to the point of fracture) is also known as the modulus of toughness.This represents the amount of energy needed to break the en essay, which could be canvassd to the impact energy of the take in, determined from impact tests. The area under the running(a) region of the curve is known as the modulus of resilience. This represents the minimum amount of energy needed to bow the sample. The linear region of the curve of Figure 2, which is called the elastic region (past this region, is called the plastic region), is the region where a material behaves elastically. The material will re cristal to its original shape when a force is released while the material is in its elastic region.The slope of the curve, which can be calculated using Equation 5, is a constant and is an intrinsic property o f material known as the elastic modulus, E. In metric units, it is usually expressed in Pascal (Pa). (Equation 5) Figure 3(a) shows typical stress-strain curves of polymers. The figure shows that materials that are hard and brickle do not deform very much before breaking and have very lofty elastic modulo. The mechanical property of polymers generally depends on their degree of crystalline, molecular(a) weights and glass transition temperature, Tug.Highly crystalline polymeric materials with a Tug supra the room temperature are usually brittle, and vice versa. When a semi-crystalline polymer undergoes a tensile test, the amorphous chains, will become aligned. This is usually evident for transparent and manifest materials, which become opaque upon turning crystalline. Figure 3(b) shows a diagram wake the mechanical property of some common polymers. Important quarter sure you wear safety glasses before starting any operation. Your eye could be hurt by a disordered piece of poly mer. withal wear gloves to protect against any residue on the machine and samples. . 1 Specimen Preparation The polymer specimens were injection-molded into dog-bone shapes. Their dimensions were determined according to the ASTM D 638 standard mentioned before in the introduction. (1) Measure the thickness, width and gage length of polymer samples in mm. These dimensions should be approximately the same for each sample. (2) in addition make note of any sample defects (e. G. Impurities, air bubbles, etc. ). The following samples will be tested 1) polypropene (UP), polystyrene (AS), polycyclic acid (polymer), high density polyethylene (HIDE), and Dentally for analysis of mechanical properties. ) Polystyrene to compare personal effects of feeding direction on mechanical properties. 3) Polypropylene to analyze effects of strain rate on mechanical properties. . 2 Bluebill Software Setup 1) Turn on the tensile test machine. The switch is located on the right side of the machine. Also t urn on the video extensors. (2)Go to the desktop and double-click on the Bluebill icon. (3) On the briny page, select Test to start a new sample. Name your test and click Browse to select the folder you would like to save it in. retick next. (4) Choose which method you would like to use.Create and save a new method if needed. (5) Method set up Save after any changes are made. General used for display purposes Specimen specifies sample dimensions and parameters. A doggone sample is used for tensile testing. Select rectangular, and specify the width, thickness and gauge length of the sample. The gauge length is the duration mingled with the clamps before starting the test. reassure describes the actual test. Select extension for mode of displacement, then specify the rate of extension. Most use 5 mm/min or 50 min/mm, depending on if you want a slow or debased test.End of Test identifies the criteria for the end of the test. A large load drop is experience when sample failure occ urs. For this test, when the sample load drops by a certain(a) percentage of the peak load, he machine will stop. Data specifies if the info is acquired manually or automatically, while the strain tab recognizes whether the strain is measured from the video exterminates or the extension. Results and Graphs select what entropy is shown and how it is displayed. (1) Make sure the proper load cell is installed, either 2 ink or 50 ink depending on the load range and sensitivity of the sample.To switch load cells, make sure the machine is off. Unscrew the bolts and remove using the cargo hold. Make sure to plug the new load cell into the port fag the machine. (2) Calibrate the load cell by licking on the sacking in the upper berth right hand corner. Make sure all loads are removed from the load cell and click calibrate. (3) order the correct type of clamps for the testing. For tensile testing, non or ink samples can be used. Install the clamps using the pins. Also install height b rackets if needed. Zero the load once the clamps are installed. 4) Press the up and down arrows on the comptroller until the clamps are tho touching. Press the reset gauge length going at the top of the screen to zero the position of the clamps. (5) Use the up and down arrows until the clamps are about 100 mm apart. This is a typical gauge length for the dog bone samples. (6) Place the polymer sample between the grips of both the tensile test machine. While holding the sample vertically with one hand, use another hand to turn the handle of the top grip in the closing direction as tightly as possible. The specimen should be gripped such that the two ends of the specimen are cover by the grip, approximately 3 mm away from its gage-length. It is important that the specimens are tightly gripped onto the specimen grips to prevent slipping, which will otherwise result in experimental errors. ) (8) Make sure that the specimen s vertically aligned, if not a torsions force, rather than ax ial force, will result. (9) Turn the fundament handle in the close direction as tightly as possible. visually verify that the sample is gripped symmetrically at its two ends. 10)Zero the extension by pushing zero extension button at the top of the screen. Also zero the load if needed. Wait for a few seconds to let the computer return its value to zero. 2. 4 Tensile Test (1) Enter geometry of the sample before starting. (2) Click on the Start button. Both the upper and bottom grips will start moving in opposite directions according to the specify pulling rate. Observe the experiment at a safe distance (about 1. 5 meters away) at an angle and take note of the failure mode when the specimen fails. (NOTE Be sure to wear safety glasses.Do not come close to equipment when the tensile test is running). (3) A plot of tensile stress (Amp) versus tensile strain (mm/mm) will be generated in real-time during the experiment. 2. 6 End of Test (1) The machine will stop automatically when the sam ple is broken. (2) Press the Return button on the digital controller. Both the upper and lower grips will be returned to their original positions automatically. 3) Turn the two handles in the open directions to remove the sample (4) Repeat the previous steps for any additional tests. 5) When finished, save your file and click Finish. This will export your data into a PDF and individual data files. (6) Clean up any broken fragments from the specimens. (7) Turn off the machine and exit the program when finished. Graph UP (50 mm/mm extension), AS (2 feed inputs), PLAN, HIDE and Dentally results using crank data files. There should be two tests for each polymer, but Just pick one to graph. Construct the true stress-strain curves for each polymer (hint use Equations 3) and (4) provided in the Introduction section).Calculate Young Modulus for each material and testing condition and compare experimental values with literature values. Discuss any differences in mechanical behavior between the polymers (use pictures ) Analyze the fracture modes of each sample (ductile fracture, brittle fracture, or intermediate fracture mode). Using the data for polypropylene, discuss the effects of strain rate on the mechanical behavior of the polymers. Using the data for polystyrene, compare effects of feed direction on the mechanical behavior. pardon any unexpected results.

No comments:

Post a Comment